Pemetaan Miskonsepsi Mahasiswa Fisika pada Konsep Energi, Kinematika, dan Listrik Statis dengan Tes Disnogtik Four-Tier
DOI:
https://doi.org/10.53299/jagomipa.v4i4.984Keywords:
Miskonsepsi, Four-tier test, Energi, Kinematika, Listrik Statis, Pendidikan FisikaAbstract
Penelitian ini bertujuan untuk menganalisis pola miskonsepsi mahasiswa pada konsep Energi, Kinematika, dan Listrik Statis menggunakan tes empat tingkat (four-tier test). Metode yang digunakan adalah deskriptif kuantitatif dengan mengidentifikasi kategori miskonsepsi berdasarkan kombinasi jawaban, alasan, dan tingkat keyakinan mahasiswa. Data dianalisis untuk mengungkap distribusi enambelas kategori kombinasi pola jawaban four-tier pada masing-masing konsep. Hasil menunjukkan bahwa kategori BM1 (Pemahaman Kuat) mendominasi pada konsep Energi, sementara kategori M7 (Miskonsepsi Kuat) lebih banyak ditemukan pada Kinematika dan Listrik Statis. Selain itu, kategori unik seperti BM3 (Ragu pada Jawaban 2) dan M4 (Miskonsepsi Parsial) hanya muncul pada Listrik Statis, yang mengindikasikan tantangan konseptual yang lebih kompleks. Temuan ini menekankan perlunya strategi pembelajaran berbasis diagnostik untuk mengatasi miskonsepsi, terutama pada konsep-konsep yang lebih sulit seperti Kinematika dan Listrik Statis. Penelitian ini memberikan kontribusi penting dalam memahami pola miskonsepsi mahasiswa dan implikasinya terhadap pembelajaran fisika.
References
Bessas, N., Tzanaki, E., Vavougios, D., & Plagianakos, V. P. (2024). Diagnosing students’ misconception in Hydrostatic Pressure through a 4-tier test. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e40425
Burde, J.-P., & Wilhelm, T. (2020). Teaching electric circuits with a focus on potential differences. Physical Review Physics Education Research, 16(2), 020153. https://doi.org/10.1103/PhysRevPhysEducRes.16.020153
Chen, C., Sonnert, G., Sadler, P. M., Sasselov, D., & Fredericks, C. (2020). The impact of student misconceptions on student persistence in a MOOC. Journal of Research in Science Teaching, 57(6), 879–910. https://doi.org/10.1002/tea.21616
Chen, C., Sonnert, G., Sadler, P. M., & Sunbury, S. (2020). The impact of high school life science teachers’ subject matter knowledge and knowledge of student misconceptions on students’ learning. CBE—Life Sciences Education, 19(1), ar9. https://doi.org/10.1187/cbe.19-08-0164
Guerra-Reyes, F., Guerra-Dávila, E., Naranjo-Toro, M., Basantes-Andrade, A., & Guevara-Betancourt, S. (2024). Misconceptions in the Learning of Natural Sciences: A Systematic Review. Education Sciences, 14(5), 497. https://doi.org/10.3390/educsci14050497
Istiyono, E., Dwandaru, W. S. B., Fenditasari, K., Ayub, M. R. S. S. N., & Saepuzaman, D. (2023). The Development of a Four-Tier Diagnostic Test Based on Modern Test Theory in Physics Education. European Journal of Educational Research, 12(1). https://doi.org/10.12973/eu-jer.12.1.371
Kiray, S. A., & Simsek, S. (2021). Determination and evaluation of the science teacher candidates’ misconceptions about density by using four-tier diagnostic test. International Journal of Science and Mathematics Education, 19, 935–955. https://doi.org/10.1007/s10763-020-10087-5
Kulgemeyer, C., & Wittwer, J. (2023). Misconceptions in physics explainer videos and the illusion of understanding: An experimental study. International Journal of Science and Mathematics Education, 21(2), 417–437. https://doi.org/10.1007/s10763-022-10265-7
Laliyo, L. A. R., Hamdi, S., Pikoli, M., Abdullah, R., & Panigoro, C. (2021). Implementation of Four-Tier Multiple-Choice Instruments Based on the Partial Credit Model in Evaluating Students’ Learning Progress. European Journal of Educational Research, 10(2), 825–840. https://doi.org/10.12973/eu-jer.10.2.825
Liu, G., & Fang, N. (2023). The effects of enhanced hands-on experimentation on correcting student misconceptions about work and energy in engineering mechanics. Research in Science & Technological Education, 41(2), 462–481. https://doi.org/10.1080/02635143.2021.1909555
Mellu, R. N. K., Langtang, D., Olbata, Y., & Laos, L. E. (2022). Identification of misconceptions causes of misconceptions of prospective physics teacher candidate using a three-tier diagnostic test with CRI on kinematics of motion static fluids. AIP Conference Proceedings, 2542(1). https://doi.org/https://doi.org/10.1063/5.0104453
Mi, S., Ye, J., Yan, L., & Bi, H. (2023). Development and validation of a conceptual survey instrument to evaluate senior high school students’ understanding of electrostatics. Physical Review Physics Education Research, 19(1), 010114. https://doi.org/10.1103/PhysRevPhysEducRes.19.010114
Notaros, B. (2021). Using conceptual questions in electromagnetics education [education corner]. IEEE Antennas and Propagation Magazine, 63(3), 128–137. https://doi.org/10.1109/MAP.2021.3069218
Önder Çelikkanlı, N., & Kızılcık, H. (2022). A review of studies about four-tier diagnostic tests in physics education. Journal of Turkish Science Education, 19(4). https://doi.org/10.36681/tused.2022.175
Onder-Celikkanli, N., & Tan, M. (2022). Determining Turkish high school students’ misconceptions about electric charge imbalance by using a four-tier misconception test. Physics Education, 57(5), 055010. https://doi.org/10.1088/1361-6552/ac68c1
Rahmawati, Y., Hartanto, O., Falani, I., & Iriyadi, D. (2022). Students’ Conceptual Understanding in Chemistry Learning Using PhET Interactive Simulations. Journal of Technology and Science Education, 12(2), 303–326. https://doi.org/10.3926/jotse.1597
Resbiantoro, G., & Setiani, R. (2022). A review of misconception in physics: the diagnosis, causes, and remediation. Journal of Turkish Science Education, 19(2). https://doi.org/10.36681/tused.2022.128
Runnalls, C., & Hong, D. S. (2020). “Well, they understand the concept of area”: pre-service teachers’ responses to student area misconceptions. Mathematics Education Research Journal, 32(4), 629–651. https://doi.org/10.1007/s13394-019-00274-1
Sıong, L. C., Tyug, O. Y., Phang, F. A., & Pusppanathan, J. (2023). The use of concept cartoons in overcoming the misconception in electricity concepts. Participatory Educational Research, 10(1), 310–329. https://doi.org/10.17275/per.23.17.10.1
Soeharto, S., & Csapó, B. (2021). Evaluating item difficulty patterns for assessing student misconceptions in science across physics, chemistry, and biology concepts. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08352
Taban, T., & Kiray, S. A. (2022). Determination of science teacher candidates’ misconceptions on liquid pressure with four-tier diagnostic test. International Journal of Science and Mathematics Education, 20(8), 1791–1811. https://doi.org/10.1007/s10763-021-10224-8
Timothy, V., Watzka, B., Stadler, M., Girwidz, R., & Fischer, F. (2023). Fostering preservice teachers’ diagnostic competence in identifying students’ misconceptions in physics. International Journal of Science and Mathematics Education, 21(5), 1685–1702. https://doi.org/10.1007/s10763-022-10311-4
Wati, W. (2024). Evaluasi Pengetahuan Konseptual Mahasiswa Fisika pada Materi Kinematika dengan Pendekatan Analisis RASCH. BIOCHEPHY: Journal of Science Education, 4(1), 413–420. https://doi.org/10.52562/biochephy.v4i1.1180
Webb, M., Tracey, M., Harwin, W., Tokatli, O., Hwang, F., Johnson, R., Barrett, N., & Jones, C. (2022). Haptic-enabled collaborative learning in virtual reality for schools. Education and Information Technologies, 1–24. https://doi.org/10.1007/s10639-021-10639-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JagoMIPA: Jurnal Pendidikan Matematika dan IPA

This work is licensed under a Creative Commons Attribution 4.0 International License.